Nonlinear Accelerator Problems via Wavelets: 5. Maps and Discretization via Wavelets

نویسندگان

  • A. Fedorova
  • M. Zeitlin
چکیده

In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this part we consider the applications of discrete wavelet analysis technique to maps which come from discretization of continuous nonlinear polynomial problems in accelerator physics. Our main point is generalization of wavelet analysis which can be applied for both discrete and continuous cases. We give explicit multiresolution representation for solutions of discrete problems, which is correct discretization of our representation of solutions of the corresponding continuous cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme

We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...

متن کامل

Nonlinear Accelerator Problems via Wavelets: 7. Invariant Calculations in Hamiltonian Problems

In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this paper we consider invariant formulation of nonlinear (Lagrangian or Hamiltonian) dynamics on semidirect structure (relativity or dynamical groups) and corresponding invariant calculations via CWT.

متن کامل

Nonlinear Accelerator Problems via Wavelets: 4. Spin-orbital Motion

In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this part we consider a model for spin-orbital motion: orbital dynamics and Thomas-BMT equations for classical spin vector. We represent the solution of this dynamical system in framework of biorthogonal wavelets via variationa...

متن کامل

Nonlinear Accelerator Problems via Wavelets: 7. Invariant Calculations in Hamilton Problems

In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this paper we consider invariant formulation of nonlinear (Lagrangian or Hamiltonian) dynamics on semidirect structure (relativity or dynamical groups) and corresponding invariant calculations via CWT.

متن کامل

Nonlinear Accelerator Problems via Wavelets: 6. Representations and Quasiclassics via Fwt

In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this part we consider application of FWT to metaplectic representation(quantum and chaotical problems) and quasiclassics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999